4u7n Citations

Conformational dynamics of the essential sensor histidine kinase WalK.

OpenAccess logo Acta Crystallogr D Struct Biol 73 793-803 (2017)
Related entries: 4u7o, 4zki, 5c93

Cited: 16 times
EuropePMC logo PMID:
doi logo

Abstract

Two-component systems (TCSs) are key elements in bacterial signal transduction in response to environmental stresses. TCSs generally consist of sensor histidine kinases (SKs) and their cognate response regulators (RRs). Many SKs exhibit autokinase, phosphoryltransferase and phosphatase activities, which regulate RR activity through a phosphorylation and dephosphorylation cycle. However, how SKs perform different enzymatic activities is poorly understood. Here, several crystal structures of the minimal catalytic region of WalK, an essential SK from Lactobacillus plantarum that shares 60% sequence identity with its homologue VicK from Streptococcus mutans, are presented. WalK adopts an asymmetrical closed structure in the presence of ATP or ADP, in which one of the CA domains is positioned close to the DHp domain, thus leading both the 尾- and 纬-phosphates of ATP/ADP to form hydrogen bonds to the 鈩�- but not the 未-nitrogen of the phosphorylatable histidine in the DHp domain. In addition, the DHp domain in the ATP/ADP-bound state has a 25.7掳 asymmetrical helical bending coordinated with the repositioning of the CA domain; these processes are mutually exclusive and alternate in response to helicity changes that are possibly regulated by upstream signals. In the absence of ATP or ADP, however, WalK adopts a completely symmetric open structure with its DHp domain centred between two outward-reaching CA domains. In summary, these structures of WalK reveal the intrinsic dynamic properties of an SK structure as a molecular basis for multifunctionality.

Reviews - 4u7n mentioned but not cited (2)

  1. Chen H, Yu C, Wu H, Li G, Li C, Hong W, Yang X, Wang H, You X. Front Chem 10 866392 (2022)
  2. Paredes A, Iheacho C, Smith AT. Biochemistry 62 2339-2357 (2023)

Articles - 4u7n mentioned but not cited (4)

  1. Cai Y, Su M, Ahmad A, Hu X, Sang J, Kong L, Chen X, Wang C, Shuai J, Han A. Acta Crystallogr D Struct Biol 73 793-803 (2017)
  2. Appasamy SD, Berrisford J, Gaborova R, Nair S, Anyango S, Grudinin S, Deshpande M, Armstrong D, Pidruchna I, Ellaway JIJ, Leines GD, Gupta D, Harrus D, Varadi M, Velankar S. Sci Data 10 853 (2023)
  3. Wang L, Fan R, Li Z, Wang L, Bai X, Bu T, Dong Y, Xu Y, Quan C. Biosci Rep 42 BSR20220352 (2022)
  4. Wang ZJ, Chen F, Xu YQ, Huang P, Liu SS. Biology (Basel) 10 638 (2021)


Reviews citing this publication (1)

  1. Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. Nat Rev Microbiol 16 585-593 (2018)

Articles citing this publication (9)

  1. Radwan A, Mahrous GM. PLoS One 15 e0234215 (2020)
  2. Dubey BN, Agustoni E, B枚hm R, Kaczmarczyk A, Mangia F, von Arx C, Jenal U, Hiller S, Plaza-Menacho I, Schirmer T. Proc Natl Acad Sci U S A 117 1000-1008 (2020)
  3. Rinaldi J, Fern谩ndez I, Shin H, Sycz G, Gunawardana S, Kumarapperuma I, Paz JM, Otero LH, Cerutti ML, Zorreguieta 脕, Ren Z, Klinke S, Yang X, Goldbaum FA. mBio 12 e00264-21 (2021)
  4. Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Nature 604 127-133 (2022)
  5. Bouillet S, Wu T, Chen S, Stock AM, Gao R. J Biol Chem 295 8106-8117 (2020)
  6. Kong L, Su M, Sang J, Huang S, Wang M, Cai Y, Xie M, Wu J, Wang S, Foster SJ, Zhang J, Han A. Front Microbiol 13 820089 (2022)
  7. Grasty KC, Guzik C, D'Lauro EJ, Padrick SB, Beld J, Loll PJ. J Biol Chem 299 103001 (2023)
  8. Vega-Baray B, Domenzain C, Poggio S, Dreyfus G, Camarena L. mBio 13 e0148122 (2022)
  9. Burgie ES, Li H, Gannam ZTK, McLoughlin KE, Vierstra RD, Li H. Nat Plants 9 1116-1129 (2023)