2xfr Citations

Chemical genetics and cereal starch metabolism: structural basis of the non-covalent and covalent inhibition of barley β-amylase.

Mol Biosyst 7 718-30 (2011)
Related entries: 2xff, 2xfy, 2xg9, 2xgb, 2xgi

Cited: 21 times
EuropePMC logo PMID:
doi logo

Abstract

There are major issues regarding the proposed pathway for starch degradation in germinating cereal grain. Given the commercial importance but genetic intractability of the problem, we have embarked on a program of chemical genetics studies to identify and dissect the pathway and regulation of starch degradation in germinating barley grains. As a precursor to in vivo studies, here we report systematic analysis of the reversible and irreversible inhibition of the major β-amylase of the grain endosperm (BMY1). The molecular basis of inhibitor action was defined through high resolution X-ray crystallography studies of unliganded barley β-amylase, as well as its complexes with glycone site binder disaccharide iminosugar G1M, irreversible inhibitors α-epoxypropyl and α-epoxybutyl glucosides, which target the enzyme's catalytic residues, and the aglycone site binders acarbose and α-cyclodextrin.

Reviews - 2xfr mentioned but not cited (1)

  1. Gopinath SC, Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. Biomed Res Int 2017 1272193 (2017)

Articles - 2xfr mentioned but not cited (5)

  1. Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell 184 643-654.e13 (2021)
  2. Moriarty NW, Liebschner D, Tronrud DE, Adams PD. Acta Crystallogr D Struct Biol 76 1159-1166 (2020)
  3. Cohen M, Fluhr R. Plant Direct 2 e00054 (2018)
  4. Duan X, Zhu Q, Zhang X, Shen Z, Huang Y. Microb Cell Fact 20 182 (2021)
  5. Palese LL. Data Brief 28 105076 (2020)


Reviews citing this publication (2)

  1. Gurung N, Ray S, Bose S, Rai V. Biomed Res Int 2013 329121 (2013)
  2. Andriotis VM, Rejzek M, Rugen MD, Svensson B, Smith AM, Field RA. Biochem Soc Trans 44 159-165 (2016)

Articles citing this publication (13)

  1. Xu M, Li Y, Zheng Z, Dai Z, Tao Y, Deng X. PLoS One 10 e0133652 (2015)
  2. Li W, Tan G, Zhao L, Chen X, Zhang X, Zhu Z, Chai Y. Anal Chim Acta 718 138-147 (2012)
  3. Monroe JD, Breault JS, Pope LE, Torres CE, Gebrejesus TB, Berndsen CE, Storm AR. Plant Physiol 175 1525-1535 (2017)
  4. Cockburn D, Wilkens C, Dilokpimol A, Nakai H, Lewińska A, Abou Hachem M, Svensson B. PLoS One 11 e0160112 (2016)
  5. Luo JC, Wang SC, Jian WB, Chen CH, Tang JL, Lee CI. FEBS Lett 586 680-685 (2012)
  6. Letter Hofer G, Wieser S, Bogdos MK, Gattinger P, Nakamura R, Ebisawa M, Mäkelä M, Papadopoulos N, Valenta R, Keller W. Allergy 74 1009-1013 (2019)
  7. Zamoner LO, Aragão-Leoneti V, Mantoani SP, Rugen MD, Nepogodiev SA, Field RA, Carvalho I. Carbohydr Res 429 29-37 (2016)
  8. Daba T, Kojima K, Inouye K. Enzyme Microb Technol 52 251-257 (2013)
  9. Rugen MD, Vernet MMJL, Hantouti L, Soenens A, Andriotis VME, Rejzek M, Brett P, van den Berg RJBHN, Aerts JMFG, Overkleeft HS, Field RA. Sci Rep 8 16421 (2018)
  10. Monroe JD, Pope LE, Breault JS, Berndsen CE, Storm AR. Front Plant Sci 9 1176 (2018)
  11. Saka N, Iwamoto H, Malle D, Takahashi N, Mizutani K, Mikami B. Acta Crystallogr D Struct Biol 74 1115-1123 (2018)
  12. Lai Z, Shen M, Shen Y, Ye YX, Zhu F, Xu J, Ouyang G. RSC Adv 12 29137-29142 (2022)
  13. Liu J, Wang X, Guan Z, Wu M, Wang X, Fan R, Zhang F, Yan J, Liu Y, Zhang D, Yin P, Yan J. Plant Cell 36 194-212 (2023)