1niv Citations

The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds mono- and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 A and 3.0 A resolution.

J Mol Biol 262 516-31 (1996)
Cited: 46 times
EuropePMC logo PMID:
doi logo

Abstract

Galanthus nivalis agglutinin (GNA, a 50 kDa tetramer) is a mannose-specific lectin of the Amaryllidaceae family of bulb lectins. Crystal structures of GNA complexed with methyl-alpha-D-mannose (MeMan) and mannose-alpha 1,3-D-mannose-alpha-OMe (MeMan-2) have been determined and analyzed in terms of internal structural symmetry and saccharide binding. The final model of the 2.29 A orthorhombic methyl-alpha-Man complex refined with an R-factor of 0.167 (all data) includes 12 bound sugar ligands and 327 water molecules. The four independent subunits (A, B, C and D) of the 222 tetramer and the three four-stranded beta-sheets (I,II and III) that constitute each subunit compare closely (r.m.s. delta = < 1.0 A). The 12 bound methyl-alpha-Man molecules refined with B-factors < 22 A2 and occupancies in the range of 0.5 to 1.0. The highest occupied site is located in beta-sheet I (site 1), where interactions from the dimer-related subunit contribute to complex stabilization. These subunit pairs (A-D and B-C) associate tightly with a buried surface area of 1738 A2 and 33 interchain hydrogen bonds resulting from C-terminal strand exchange. In comparison, the A-B and C-D subunit pairs have narrow interfaces (476 A2) and no direct H-bond contacts. The 3.0 A structure of the cubic Man-alpha 1,3-Man-OMe complex, determined by molecular replacement and refined with X-PLOR using NCS constraints and density modification methods, is less well ordered due to a high crystal solvent content (68%). Complexed disaccharide is responsible for the most crucial lattice contacts, which involve only one of the two independent subunits (A). The second subunit (C) shows a high degree of flexibility (Bav = 41.7 A2). The complete disaccharide molecule is visible in both subunits at site 3, which is the only extended site. The ligand is oriented with its reducing end positioned in the specificity pocket. The non-reducing manose is in contact through hydrogen bonding with a charged subsite (D37-K38) on the 2-fold-related subunit (A-B or C-D interfaces). Bound Man-alpha 1,3-MeMan is also well defined in site 2 of subunit A, as a result of favorable lattice contacts, while only the mannose residue bound in the specificity pocket is visible at site 2 of subunit C and site 1 of both subunits. Together these results suggest that strong binding correlates with the presence of subsidiary contacts coming either from a dimer-related subunit or from lattice interactions. Site 1 is most specific for terminal non-reducing or reducing mannose, while site 3 is extended and complementary to alpha-1,3 linked mannose oligosaccharides.

Reviews - 1niv mentioned but not cited (2)

  1. Mitchell CA, Ramessar K, O'Keefe BR. Antiviral Res 142 37-54 (2017)
  2. Barre A, Bourne Y, Van Damme EJM, Rougé P. Int J Mol Sci 20 E254 (2019)

Articles - 1niv mentioned but not cited (2)

  1. Ashfaq UA, Masoud MS, Khaliq S, Nawaz Z, Riazuddin S. Virol J 8 248 (2011)
  2. Padilla CS, Damaj MB, Yang ZN, Molina J, Berquist BR, White EL, Solís-Gracia N, Da Silva J, Mandadi KK. Front Bioeng Biotechnol 8 977 (2020)


Reviews citing this publication (6)

  1. Balzarini J. Nat Rev Microbiol 5 583-597 (2007)
  2. Balzarini J. Antiviral Res 71 237-247 (2006)
  3. Botos I, Wlodawer A. Prog Biophys Mol Biol 88 233-282 (2005)
  4. Imberty A. Curr Opin Struct Biol 7 617-623 (1997)
  5. Wright CS. Curr Opin Struct Biol 7 631-636 (1997)
  6. Best HL, Williamson LJ, Heath EA, Waller-Evans H, Lloyd-Evans E, Berry C. FEMS Microbiol Rev 47 fuad026 (2023)

Articles citing this publication (36)

  1. Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK. ACS Chem Biol 17 2993-3012 (2022)
  2. Chandra NR, Ramachandraiah G, Bachhawat K, Dam TK, Surolia A, Vijayan M. J Mol Biol 285 1157-1168 (1999)
  3. Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K. J Biol Chem 286 19446-19458 (2011)
  4. Moothoo DN, Naismith JH. Glycobiology 8 173-181 (1998)
  5. Wright CS, Hester G. Structure 4 1339-1352 (1996)
  6. McCaughey LC, Grinter R, Josts I, Roszak AW, Waløen KI, Cogdell RJ, Milner J, Evans T, Kelly S, Tucker NP, Byron O, Smith B, Walker D. PLoS Pathog 10 e1003898 (2014)
  7. Sauerborn MK, Wright LM, Reynolds CD, Grossmann JG, Rizkallah PJ. J Mol Biol 290 185-199 (1999)
  8. Van Damme EJ, Barre A, Mazard AM, Verhaert P, Horman A, Debray H, Rouge P, Peumans WJ. Eur J Biochem 259 135-142 (1999)
  9. Knight PJ, Carroll J, Ellar DJ. Insect Biochem Mol Biol 34 101-112 (2004)
  10. Prabu MM, Suguna K, Vijayan M. Proteins 35 58-69 (1999)
  11. Yao JH, Zhao XY, Liao ZH, Lin J, Chen ZH, Chen F, Song J, Sun XF, Tang KX. Cell Res 13 301-308 (2003)
  12. An J, Liu JZ, Wu CF, Li J, Dai L, Van Damme E, Balzarini J, De Clercq E, Chen F, Bao JK. Acta Biochim Biophys Sin (Shanghai) 38 70-78 (2006)
  13. Van Damme EJ, Astoul CH, Barre A, Rougé P, Peumans WJ. Eur J Biochem 267 5067-5077 (2000)
  14. Ghequire MG, Garcia-Pino A, Lebbe EK, Spaepen S, Loris R, De Mot R. PLoS Pathog 9 e1003199 (2013)
  15. Huang W, Wang D, Yamada M, Wang LX. J Am Chem Soc 131 17963-17971 (2009)
  16. Perczel A, Gáspári Z, Csizmadia IG. J Comput Chem 26 1155-1168 (2005)
  17. Hoorelbeke B, Van Damme EJ, Rougé P, Schols D, Van Laethem K, Fouquaert E, Balzarini J. Retrovirology 8 10 (2011)
  18. Peumans WJ, Barre A, Bras J, Rougé P, Proost P, Van Damme EJ. Plant Physiol 129 1054-1065 (2002)
  19. Ramachandraiah G, Chandra NR, Surolia A, Vijayan M. Glycobiology 13 765-775 (2003)
  20. Dang L, Van Damme EJM. Plant Physiol Biochem 108 165-176 (2016)
  21. Ghequire MG, Loris R, De Mot R. Biochem Soc Trans 40 1553-1559 (2012)
  22. de Santana Evangelista K, Andrich F, Figueiredo de Rezende F, Niland S, Cordeiro MN, Horlacher T, Castelli R, Schmidt-Hederich A, Seeberger PH, Sanchez EF, Richardson M, Gomes de Figueiredo S, Eble JA. J Biol Chem 284 34747-34759 (2009)
  23. Shetty KN, Bhat GG, Inamdar SR, Swamy BM, Suguna K. Glycobiology 22 56-69 (2012)
  24. Van Damme EJM. Glycoconj J 39 83-97 (2022)
  25. Astoul CH, Peumans WJ, Van Damme EJ, Roug. Biochem Biophys Res Commun 274 455-460 (2000)
  26. Sun Q, Zhao L, Song Q, Wang Z, Qiu X, Zhang W, Zhao M, Zhao G, Liu W, Liu H, Li Y, Liu X. Glycobiology 22 369-378 (2012)
  27. Sames K, Halata Z, Jojovic M, van Damme EJ, Peumans WJ, Delpech B, Asmus B, Schumacher U. J Histochem Cytochem 49 19-28 (2001)
  28. Balzarini J. Curr Opin HIV AIDS 1 355-360 (2006)
  29. Vanderlinden E, Van Winkel N, Naesens L, Van Damme EJM, Persoons L, Schols D. Antimicrob Agents Chemother 65 e01732-20 (2021)
  30. Schuster M, Wasserbauer E, Aversa G, Jungbauer A. Protein Expr Purif 21 1-7 (2001)
  31. Okubo S, Asakura T, Okubo K, Abe K, Misaka T, Akita T, Abe K. J Plant Physiol 165 1964-1969 (2008)
  32. Warneys R, Gaucher M, Robert P, Aligon S, Anton S, Aubourg S, Barthes N, Braud F, Cournol R, Gadenne C, Heintz C, Brisset MN, Degrave A. Front Plant Sci 9 1795 (2018)
  33. Liu Z, Zhang Y. J Mol Model 15 1501-1507 (2009)
  34. Pereira J, Lupas AN. Front Mol Biosci 9 895496 (2022)
  35. Kemmerer M, Bonning BC. Insect Sci 27 22-32 (2020)
  36. Auer M, Graf C, La Clair JJ. Angew Chem Int Ed Engl 40 1889-1892 (2001)


Related citations provided by authors (1)

  1. . Hester G, Kaku H, Goldstein IJ, Wright CS Nat. Struct. Biol. 2 472- (1995)